List 10

Review for Exam 2
240. Calculate the following limits, if they exist:
(a) $\lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x^{2}-2 x-8}=\sqrt{\frac{7}{6}}$ from algebra or L'Hospital
(b) $\lim _{x \rightarrow 4} \frac{x^{2}+x-12}{x^{2}-2 x-8}$ doesn't exist
(c) $\lim _{x \rightarrow \infty} x e^{-x}=0$ from L'Hospital with $\frac{x}{e^{x}}$
(d) $\lim _{x \rightarrow 0^{+}} x^{2} \ln (x)=0$ from L'Hospiral with $\frac{x^{2}}{\ln (x)}$
(e) $\lim _{x \rightarrow 1} x^{2} \ln (x)=0$ just from plugging in $x=1$
241. Compute $\lim _{x \rightarrow 0} \frac{2 e^{x}-x^{2}-2 x-2}{x^{3}} \cdot \frac{1}{3}$
242. Compute $\lim _{x \rightarrow 0}(\cos 6 x)^{1 / x^{2}}$. Hint: First compute $\lim _{x \rightarrow 0} \ln \left((\cos 6 x)^{1 / x^{2}}\right)$.

$$
\begin{aligned}
\ln \left(a^{b}\right) & =b \ln (a) \\
\ln \left((\cos 6 x)^{1 / x^{2}}\right) & =\frac{1}{x^{2}} \ln (\cos 6 x) \\
\lim _{x \rightarrow 0} \ln \left((\cos 6 x)^{1 / x^{2}}\right) & =\lim _{x \rightarrow 0} \frac{\ln (\cos 6 x)}{x^{2}} \\
& \stackrel{\text { LH H }}{=} \lim _{x \rightarrow 0} \frac{\frac{1}{\cos 6 x} \cdot(-6 \sin (6 x))}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{-3 \sin (6 x)}{x \cos (6 x)} \\
& \stackrel{\text { L'H }}{=} \lim _{x \rightarrow 0} \frac{-18 \cos (6 x)}{-6 x \sin (x)+\cos (6 x)} \\
& =\frac{-18}{0+1}=-18
\end{aligned}
$$

Since $\ln ($ Answer $)=-18$, we have Answer $=e^{-18}$.
243. Give an equation for the tangent line to $y=\sqrt{x}+x^{3}$ at $x=1$.
$y=2+\frac{7}{2}(x-1)$, or $y=\frac{7}{2} x-\frac{3}{2}$.
244. Use the Quotient Rule and the Product Rule to compute $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for $y=\frac{\ln (x) e^{x}}{x^{2}}$.

$$
\frac{x^{2}\left(\ln (x) e^{x}+\frac{1}{x} e^{x}\right)-\ln (x) e^{x}(2 x)}{x^{4}}=\frac{e^{x}}{x^{3}}(x \ln (x)-2 \ln (x)+1)
$$

245. Give an equation for the tangent line to $y=e^{4 x \cos x}$ at $x=0 . y=4 x+1$
246. Calculate the derivative of $e^{5 x}$ in two ways:
(a) Use the rule $\frac{\mathrm{d}}{\mathrm{d} x}\left[e^{x}\right]=e^{x}$ along with the Chain Rule (here $e^{5 x}=f(g(x))$ with $f(x)=e^{x}$ and $\left.g(x)=5 x\right) . e^{5 x} \cdot 5$, which is $5 e^{5 x}$.
(b) Use algebra to rewrite $e^{5 x}=\left(e^{5}\right)^{x}$ and then find the derivative of that function using the rule $\frac{\mathrm{d}}{\mathrm{d} x}\left[a^{x}\right]=a^{x} \cdot \ln (a) .\left(e^{5}\right)^{x} \cdot \ln \left(e^{5}\right)$, which is $5 e^{5 x}$.
247. Calculate the derivative $\ln (5 x)$ in two ways:
(a) Use the rule $\frac{\mathrm{d}}{\mathrm{d} x}[\ln (x)]=\frac{1}{x}$ along with the Chain Rule (here $\ln (5 x)=$ $f(g(x))$ with $f(x)=\ln (x)$ and $g(x)=5 x) \cdot \frac{1}{5 x} \cdot 5$, which is $\frac{1}{x}$.
(b) Use algebra to rewrite $\ln (5 x)=\ln (x)+\ln (5)$ and then find the derivative of that function. $\frac{1}{x}+0$, which is $\frac{1}{x}$.
248. On what interval(s) is the function $x^{3}-6 x+11$ increasing? $(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)$
249. On what interval(s) is the function $x^{3}-6 x+11$ concave up? $(0, \infty)$
250. Find the x-coordinates of all critical points of $(2 x+3) e^{4 x} \cdot x=-\frac{7}{4}$
251. Find the x-coordinates of all inflection points of $x^{4}+9 x^{3}-15 x^{2}+17 . \quad x=-5, x=\frac{1}{2}$
252. Find the x-coordinates of all inflection points of $x^{5}+10 x^{4}-50 x^{3}+80 x^{2}-15$. $x=-8$ only
253. Find the absolute minimum of $f(x)=\frac{1}{4} x^{4}-4 x^{3}+22 x^{2}-48 x+32$ on $[1,9]$.
$x=2$ AND $x=6$ both have $y=-4$
254. Find the critical point(s) of $g(x)=\sqrt[3]{3 x^{2}+4 x+1} . \quad x=-1, \quad x=-\frac{2}{3}, \quad x=-\frac{1}{3}$
255. Find all the critical point(s) of the function

$$
f(x)=x^{4}-12 x^{3}+30 x^{2}-28 x
$$

and classify each one as a local minimum, local maximum, or neither.

```
x=-1 is neither, x=7 is a local min
```

256. Find all the critical point(s) of the function

$$
f(x)=x(6-x)^{2 / 3}
$$

and classify each one as a local minimum, local maximum, or neither.
After simplifying, $f^{\prime}(x)=\frac{18-5 x}{3(6-x)^{1 / 3}}$, so the critical points are $x=\frac{18}{5}$ (where f^{\prime} is zero) and $x=6$ (where f^{\prime} doesn't exist). The fact that $x=\frac{18}{5}$ is a local max can be found from the First or the Second Derivative Test, but the fact that $x=6$ is a local min requires the First D. Test because $f^{\prime \prime}(6)$ is not defined.
≈ 257. Suppose $f(x)$ is a differentiable function for which $f(6)=2$ and $f^{\prime}(6)=0$ and $f^{\prime \prime}(6)=3$. Does the function have a local minimum at $x=6$? Yes because $f^{\prime}(6)=0$ and $f^{\prime \prime}(6)>0$.
A local maximum? No because that would require $f^{\prime \prime}(6)<0$.
≈ 258. Suppose $f(x)$ is a differentiable function for which $f(3)=0$ and $f^{\prime}(3)=2$ and $f^{\prime \prime}(3)=6$. Does the function have a local minimum at $x=3$? No because $f^{\prime}(3) \neq 0$ so $x=3$ is not a critical point.
A local maximum? No because $f^{\prime}(3) \neq 0$ so $x=3$ is not a critical point.
259. Calculate the value of $\int_{-2}^{2}\left(4-x^{2}\right) \mathrm{d} x . \frac{32}{3}$
260. Find the value of $\int_{-2}^{2} \sqrt{4-x^{2}} \mathrm{~d} x$. 2π This is the area of half of a disk with radius 2 .
261. Compute the following indefinite integrals:
(a) $\int 6 \mathrm{~d} x=6 x+C$
(b) $\int(2 x+6) \mathrm{d} x=x^{2}+6 x+C$
(c) $\int \frac{8}{x} \mathrm{~d} x=8 \ln (x)+C$
(d) $\int \frac{8}{q} \mathrm{~d} q=8 \ln (q)+C$
(e) $\int x^{2} \cos \left(x^{3}\right) \mathrm{d} x=\frac{1}{3} \sin \left(x^{3}\right)+C$
(f) $\int x^{2} \cos (x) \mathrm{d} x=2 x \cos x+\left(x^{2}-2\right) \sin x+C$ using parts twice.
262. Compute the following definite integrals:
(a) $\int_{1}^{5}(2 x+6) \mathrm{d} x=48$
(b) $\int_{0}^{\pi} \frac{1}{3} \sin (u) \mathrm{d} u=\frac{2}{3}$
(c) $\int_{1}^{4}\left(x^{3}+2 x-7\right) \mathrm{d} x=\frac{231}{4}$
(d) $\int_{0}^{\pi} 2 e^{t} \sin (5 t) \mathrm{d} t=\frac{5}{13}\left(e^{\pi}+1\right)$
263. Compute the following integrals of rational functions:
(a) $\int \frac{2 x+3}{10 x^{2}+30 x+40} \mathrm{~d} x=\frac{1}{10} \ln \left(x^{2}+3 x+4\right)+C$
(b) $\int \frac{10 x^{2}+30 x+40}{5 x} \mathrm{~d} x=x^{2}+6 x+8 \ln (x)+C$
(c) $\int_{1}^{3} \frac{10 x^{2}+30 x+40}{5 x} \mathrm{~d} x=20+8 \ln (3)$
(d) $\int \frac{3}{10 x^{2}+40} \mathrm{~d} x=\frac{3}{20} \arctan \left(\frac{x}{2}\right)+C$
(e) $\int_{0}^{2} \frac{3}{10 x^{2}+40} \mathrm{~d} x=\frac{3 \pi}{80}$ because $\arctan (1)=\frac{\pi}{4}$ and $\arctan (0)=0$
(f) $\int_{2}^{\infty} \frac{1}{x^{5}} \mathrm{~d} x=\lim _{b \rightarrow \infty}\left(\frac{1}{64}-\frac{1}{4 b^{4}}\right)=\frac{1}{64}$
264. Find the area of the domain

$$
\begin{aligned}
&\left\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq 5 \sin \left(\frac{x}{2}\right)\right\} . \\
& \int_{0}^{\pi} 5 \sin \left(\frac{x}{2}\right)=\left[-10 \cos \left(\frac{x}{2}\right)\right]_{x=0}^{x=\pi}=10
\end{aligned}
$$

265. Find the area of the domain

$$
\begin{gathered}
\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq 2 x \sin (3 x)+4 x\} . \\
\int_{0}^{\pi}(2 x \sin (3 x)+4 x)=\underbrace{\int_{0}^{\pi} 2 x \sin (3 x) \mathrm{d} x}_{\text {parts }}+\underbrace{\int_{0}^{\pi} 4 x \mathrm{~d} x}_{\text {basic anti-derivative }}=\frac{2}{3} \pi+2 \pi^{2}
\end{gathered}
$$

266. Find the area of the region bounded by the curves $y=x^{2}$ and $y=10-x^{2}$.

$$
\int_{-\sqrt{5}}^{\sqrt{5}}\left(\left(10-x^{2}\right)-x^{2}\right) \mathrm{d} x=\frac{40 \sqrt{5}}{3}
$$

267. Calculate the area of the region bounded by $x=1, y=1$, and $y=\ln (x)$.

Option 1: \int_{1}^{e} (top - bottom) $\mathrm{d} x=\int_{1}^{e}(1-\ln (x)) \mathrm{d} x=e-2$
Option 2: \int_{0}^{1} (right - left) $\mathrm{d} y=\int_{0}^{1}\left(e^{y}-1\right) \mathrm{d} y=e-2$
$\sum 268$. (a) Find the area of the region bounded by $y=x^{2}+a$ and $y=a x^{2}+2$, where $a \in[0,1)$ is a parameter (your answer will be a formula using a).
The intersections are when $x= \pm \sqrt{\frac{a-2}{a-1}}$. The area is

$$
\int_{-\sqrt{(a-2) /(a-1)}}^{\sqrt{(a-2) /(a-1)}}\left(\left(a x^{2}+2\right)-\left(x^{2}+a\right)\right) \mathrm{d} x=\frac{-4(a-2)^{3 / 2}}{3(a-1)^{1 / 2}}
$$

(b) Among all such shapes, what is the smallest possible area? The function $f(a)=\frac{-4(a-2)^{3 / 2}}{3(a-1)^{1 / 2}}$ has $f^{\prime}(a)=0$ when $a=\frac{1}{2}$.
269. Calculate the volume of the solid formed by rotating

$$
\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq x \sqrt{\sin x}\}
$$

around the x-axis.
$\int_{0}^{\pi} \pi(x \sqrt{\sin x})^{2} \mathrm{~d} x=\pi \int_{0}^{\pi} x^{2} \sin x \mathrm{~d} x=\pi^{3}-4 \pi$
270. Calculate the volume of the solid formed by rotating the region from Task 266 around the y-axis.
$2 \int_{0}^{5} \pi(\sqrt{y})^{2} \mathrm{~d} y=25 \pi$
271. Find the volume of the solid formed by rotating the region bounded by $y=-x^{2}+10 x-21$ and the x-axis around the x-axis.
The x-axis is $y=0$. The solutions to $0=-x^{2}+10 x-21$ are $x=3$ and $x=7$.
$V=\int_{3}^{7} \pi\left(-x^{2}+10 x-21\right)^{2} \mathrm{~d} x=\pi \int_{3}^{7}\left(x^{4}-20 x^{3}+142 x^{2}-420 x+441\right) \mathrm{d} x=\frac{32}{3}$
272. For the function

$$
f(x)=x e^{-x / 4}
$$

(a) Give the equation for the tangent line to $y=f(x)$ at $x=-4 . y=2 e x+4 e$
(b) Compute the limits $\lim _{x \rightarrow 1} f(x) e^{-1 / 4}$ and $\lim _{x \rightarrow \infty} f(x) .0$
(c) Find the critical point of $f(x)$. (There is only one.) $x=4$ and $y=4 / e$
(d) Is the point from part (c) a local minimum, local maximum, or neither? local max
(e) Find the inflection point of $f(x)$. (There is only one.) $x=8$ and $y=8 / e^{2}$
(f) Calculate the area of the domain $\{(x, y): 0 \leq x \leq 4,0 \leq y \leq f(x)\}$.

$$
\int_{0}^{4} f(x) \mathrm{d} x=16-\frac{32}{e}
$$

(g) Calculate the volume of the solid formed by rotating the region from part (f) around the x-axis.

$$
\int_{0}^{4} \pi f(x)^{2} \mathrm{~d} x=\left(16-\frac{80}{e^{2}}\right) \pi
$$

