Analysis 1, Summer 2023 List 10 Review for Exam 2

240. Calculate the following limits, if they exist:

- (a) $\lim_{x \to 4} \frac{x^2 x 12}{x^2 2x 8} = \boxed{\frac{7}{6}}$ from algebra or L'Hospital
- (b) $\lim_{x \to 4} \frac{x^2 + x 12}{x^2 2x 8}$ doesn't exist
- (c) $\lim_{x \to \infty} x e^{-x} = 0$ from L'Hospital with $\frac{x}{e^x}$
- (d) $\lim_{x \to 0^+} x^2 \ln(x) = 0$ from L'Hospiral with $\frac{x^2}{\ln(x)}$
- (e) $\lim_{x \to 1} x^2 \ln(x) = 0$ just from plugging in x = 1

241. Compute
$$\lim_{x \to 0} \frac{2e^x - x^2 - 2x - 2}{x^3}$$
. $\frac{1}{3}$

242. Compute $\lim_{x\to 0} (\cos 6x)^{1/x^2}$. Hint: First compute $\lim_{x\to 0} \ln\left((\cos 6x)^{1/x^2}\right)$.

$$\ln(a^b) = b \ln(a)$$

$$\ln\left((\cos 6x)^{1/x^2}\right) = \frac{1}{x^2} \ln(\cos 6x)$$

$$\lim_{x \to 0} \ln\left((\cos 6x)^{1/x^2}\right) = \lim_{x \to 0} \frac{\ln(\cos 6x)}{x^2}$$

$$\stackrel{\text{L'H}}{=} \lim_{x \to 0} \frac{\frac{1}{\cos 6x} \cdot (-6\sin(6x))}{2x}$$

$$= \lim_{x \to 0} \frac{-3\sin(6x)}{x\cos(6x)}$$

$$\stackrel{\text{L'H}}{=} \lim_{x \to 0} \frac{-18\cos(6x)}{-6x\sin(x) + \cos(6x)}$$

$$= \frac{-18}{0+1} = -18$$

Since $\ln(\text{Answer}) = -18$, we have $\text{Answer} = e^{-18}$

- 243. Give an equation for the tangent line to $y = \sqrt{x} + x^3$ at x = 1. $y = 2 + \frac{7}{2}(x-1)$, or $y = \frac{7}{2}x - \frac{3}{2}$.
- 244. Use the Quotient Rule and the Product Rule to compute $\frac{\mathrm{d}y}{\mathrm{d}x}$ for $y = \frac{\ln(x)e^x}{x^2}$. $\frac{x^2(\ln(x)e^x + \frac{1}{x}e^x) - \ln(x)e^x(2x)}{x^4} = \boxed{\frac{e^x}{x^3}(x\ln(x) - 2\ln(x) + 1)}$

245. Give an equation for the tangent line to $y = e^{4x \cos x}$ at x = 0. y = 4x + 1246. Calculate the derivative of e^{5x} in two ways:

- (a) Use the rule $\frac{d}{dx}[e^x] = e^x$ along with the Chain Rule (here $e^{5x} = f(g(x))$ with $f(x) = e^x$ and g(x) = 5x). $e^{5x} \cdot 5$, which is $5e^{5x}$.
- (b) Use algebra to rewrite $e^{5x} = (e^5)^x$ and then find the derivative of that function using the rule $\frac{d}{dx}[a^x] = a^x \cdot \ln(a)$. $(e^5)^x \cdot \ln(e^5)$, which is $5e^{5x}$.
- 247. Calculate the derivative $\ln(5x)$ in two ways:
 - (a) Use the rule $\frac{d}{dx} [\ln(x)] = \frac{1}{x}$ along with the Chain Rule (here $\ln(5x) = f(g(x))$) with $f(x) = \ln(x)$ and g(x) = 5x). $\frac{1}{5x} \cdot 5$, which is $\frac{1}{x}$.
 - (b) Use algebra to rewrite $\ln(5x) = \ln(x) + \ln(5)$ and then find the derivative of that function. $\frac{1}{x} + 0$, which is $\frac{1}{x}$.

248. On what interval(s) is the function $x^3-6x+11$ increasing? $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$

- 249. On what interval(s) is the function $x^3 6x + 11$ concave up? $(0, \infty)$
- 250. Find the x-coordinates of all critical points of $(2x+3)e^{4x}$. $x = -\frac{7}{4}$
- 251. Find the x-coordinates of all inflection points of $x^4 + 9x^3 15x^2 + 17$. $x = -5, x = \frac{1}{2}$
- 252. Find the x-coordinates of all inflection points of $x^5 + 10x^4 50x^3 + 80x^2 15$. x = -8 only
- 253. Find the absolute minimum of $f(x) = \frac{1}{4}x^4 4x^3 + 22x^2 48x + 32$ on [1,9]. x = 2 AND x = 6 both have y = -4

254. Find the critical point(s) of
$$g(x) = \sqrt[3]{3x^2 + 4x + 1}$$
. $x = -1$, $x = -\frac{2}{3}$, $x = -\frac{1}{3}$

255. Find all the critical point(s) of the function

$$f(x) = x^4 - 12x^3 + 30x^2 - 28x$$

and classify each one as a local minimum, local maximum, or neither. x = -1 is neither, x = 7 is a local min

256. Find all the critical point(s) of the function

$$f(x) = x(6-x)^{2/3}$$

and classify each one as a local minimum, local maximum, or neither.

After simplifying, $f'(x) = \frac{18 - 5x}{3(6 - x)^{1/3}}$, so the critical points are $x = \frac{18}{5}$ (where f' is zero) and x = 6 (where f' doesn't exist). The fact that $x = \frac{18}{5}$ is a local max can be found from the First or the Second Derivative Test, but the fact that x = 6 is a local min requires the First D. Test because f''(6) is not defined.

- ☆ 257. Suppose f(x) is a differentiable function for which f(6) = 2 and f'(6) = 0 and f''(6) = 3. Does the function have a local minimum at x = 6? Yes because f'(6) = 0 and f''(6) > 0. A local maximum? No because that would require f''(6) < 0.
- ≈ 258 . Suppose f(x) is a differentiable function for which f(3) = 0 and f'(3) = 2 and f''(3) = 6. Does the function have a local minimum at x = 3? No because $f'(3) \neq 0$ so x = 3 is not a critical point.

A local maximum? No because $f'(3) \neq 0$ so x = 3 is not a critical point.

- 259. Calculate the value of $\int_{-2}^{2} (4 x^2) \, \mathrm{d}x$. $\frac{32}{3}$
- 260. Find the value of $\int_{-2}^{2} \sqrt{4-x^2} \, dx$. 2π This is the area of half of a disk with radius 2.
- 261. Compute the following indefinite integrals:

(a)
$$\int 6 \, dx = 6x + C$$

(b) $\int (2x+6) \, dx = x^2 + 6x + C$
(c) $\int \frac{8}{x} \, dx = 8 \ln(x) + C$
(d) $\int \frac{8}{q} \, dq = 8 \ln(q) + C$
(e) $\int x^2 \cos(x^3) \, dx = \frac{1}{3} \sin(x^3) + C$
(f) $\int x^2 \cos(x) \, dx = 2x \cos x + (x^2 - 2) \sin x + C$ using parts twice.

262. Compute the following definite integrals:

(a)
$$\int_{1}^{5} (2x+6) dx = 48$$

(b) $\int_{0}^{\pi} \frac{1}{3} \sin(u) du = \frac{2}{3}$
(c) $\int_{1}^{4} (x^{3}+2x-7) dx = \frac{231}{4}$
(d) $\int_{0}^{\pi} 2e^{t} \sin(5t) dt = \frac{5}{13}(e^{\pi}+1)$

263. Compute the following integrals of rational functions:

(a)
$$\int \frac{2x+3}{10x^2+30x+40} \, \mathrm{d}x = \frac{1}{10} \ln(x^2+3x+4) + C$$

(b)
$$\int \frac{10x^2 + 30x + 40}{5x} dx = x^2 + 6x + 8\ln(x) + C$$

(c)
$$\int_1^3 \frac{10x^2 + 30x + 40}{5x} dx = 20 + 8\ln(3)$$

(d)
$$\int \frac{3}{10x^2 + 40} dx = \frac{3}{20} \arctan(\frac{x}{2}) + C$$

(e)
$$\int_0^2 \frac{3}{10x^2 + 40} dx = \frac{3\pi}{80} \text{ because } \arctan(1) = \frac{\pi}{4} \text{ and } \arctan(0) = 0$$

(f)
$$\int_2^\infty \frac{1}{x^5} dx = \lim_{b \to \infty} \left(\frac{1}{64} - \frac{1}{4b^4}\right) = \frac{1}{64}$$

264. Find the area of the domain

$$\{(x,y): 0 \le x \le \pi, \ 0 \le y \le 5\sin(\frac{x}{2})\}\$$

265. Find the area of the domain

$$\{(x,y): 0 \le x \le \pi, \ 0 \le y \le 2x \sin(3x) + 4x\}.$$
$$\int_{0}^{\pi} (2x\sin(3x) + 4x) = \underbrace{\int_{0}^{\pi} 2x\sin(3x) \, dx}_{\text{parts}} + \underbrace{\int_{0}^{\pi} 4x \, dx}_{\text{basic anti-derivative}} = \boxed{\frac{2}{3}\pi + 2\pi^{2}}_{\text{basic anti-derivative}}$$

266. Find the area of the region bounded by the curves $y = x^2$ and $y = 10 - x^2$. $\int_{-\sqrt{5}}^{\sqrt{5}} \left((10 - x^2) - x^2 \right) dx = \boxed{\frac{40\sqrt{5}}{3}}$

267. Calculate the area of the region bounded by x = 1, y = 1, and $y = \ln(x)$.

Option 1:
$$\int_{1}^{e} (\text{top} - \text{bottom}) \, dx = \int_{1}^{e} (1 - \ln(x)) \, dx = \boxed{e - 2}$$

Option 2: $\int_{0}^{1} (\text{right} - \text{left}) \, dy = \int_{0}^{1} (e^{y} - 1) \, dy = \boxed{e - 2}$

☆ 268. (a) Find the area of the region bounded by $y = x^2 + a$ and $y = ax^2 + 2$, where $a \in [0, 1)$ is a parameter (your answer will be a formula using a). The intersections are when $x = \pm \sqrt{\frac{a-2}{a-1}}$. The area is

$$\int_{-\sqrt{(a-2)/(a-1)}}^{\sqrt{(a-2)/(a-1)}} \left((ax^2+2) - (x^2+a) \right) \mathrm{d}x = \frac{-4(a-2)^{3/2}}{3(a-1)^{1/2}}$$

(b) Among all such shapes, what is the smallest possible area? The function $f(a) = \frac{-4(a-2)^{3/2}}{3(a-1)^{1/2}}$ has f'(a) = 0 when $a = \frac{1}{2}$.

269. Calculate the volume of the solid formed by rotating

$$\{(x,y): 0 \le x \le \pi, \ 0 \le y \le x\sqrt{\sin x}\}$$

around the x-axis.

$$\int_0^{\pi} \pi \left(x \sqrt{\sin x} \right)^2 dx = \pi \int_0^{\pi} x^2 \sin x \, dx = \pi \frac{\pi^3 - 4\pi}{4\pi}$$

270. Calculate the volume of the solid formed by rotating the region from Task 266 around the y-axis.

 $2\int_0^0 \pi(\sqrt{y}\,)^2\,\mathrm{d}y = \boxed{25\pi}$

- 271. Find the volume of the solid formed by rotating the region bounded by $y = -x^2 + 10x 21$ and the *x*-axis around the *x*-axis. The *x*-axis is y = 0. The solutions to $0 = -x^2 + 10x - 21$ are x = 3 and x = 7. $V = \int_3^7 \pi (-x^2 + 10x - 21)^2 dx = \pi \int_3^7 (x^4 - 20x^3 + 142x^2 - 420x + 441) dx = \frac{32}{3}$
- 272. For the function

$$f(x) = xe^{-x/4},$$

- (a) Give the equation for the tangent line to y = f(x) at x = -4. y = 2ex + 4e
- (b) Compute the limits $\lim_{x\to 1} f(x) = \frac{e^{-1/4}}{e^{-1/4}}$ and $\lim_{x\to\infty} f(x)$.
- (c) Find the critical point of f(x). (There is only one.) x = 4 and y = 4/e
- (d) Is the point from part (c) a local minimum, local maximum, or neither?
- (e) Find the inflection point of f(x). (There is only one.) x = 8 and $y = 8/e^2$
- (f) Calculate the area of the domain $\{(x, y) : 0 \le x \le 4, 0 \le y \le f(x)\}$. $\int_0^4 f(x) \, \mathrm{d}x = \boxed{16 - \frac{32}{e}}$
- (g) Calculate the volume of the solid formed by rotating the region from part (f) around the x-axis.

$$\int_{0}^{4} \pi f(x)^{2} \, \mathrm{d}x = \left(16 - \frac{80}{e^{2}}\right)\pi$$